skip to main content


Search for: All records

Creators/Authors contains: "Richter, Steffen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The anisotropic permittivity parameters of monoclinic single crystal lutetium oxyorthosilicate, Lu2SiO5 (LSO), have been determined in the terahertz spectral range. Using terahertz generalized spectroscopic ellipsometry (THz-GSE), we obtained the THz permittivities along the a, b, and c⋆ crystal directions, which correspond to the εa, εb, and εc⋆ on-diagonal tensor elements. The associated off diagonal tensor element εac⋆ was also determined experimentally, which is required to describe LSO's optical response in the monoclinic a–c crystallographic plane. From the four tensor elements obtained in the model fit, we calculate the direction of the principal dielectric axes in the a–c plane. We find good agreement when comparing THz-GSE permittivities to the static permittivity tensors from previous infrared and density functional theory studies.

     
    more » « less
    Free, publicly-accessible full text available January 15, 2025
  2. Electron effective mass is a fundamental material parameter defining the free charge carrier transport properties, but it is very challenging to be experimentally determined at high temperatures relevant to device operation. In this work, we obtain the electron effective mass parameters in a Si-doped GaN bulk substrate and epitaxial layers from terahertz (THz) and mid-infrared (MIR) optical Hall effect (OHE) measurements in the temperature range of 38–340 K. The OHE data are analyzed using the well-accepted Drude model to account for the free charge carrier contributions. A strong temperature dependence of the electron effective mass parameter in both bulk and epitaxial GaN with values ranging from (0.18 ± 0.02) m0 to (0.34 ± 0.01) m0 at a low temperature (38 K) and room temperature, respectively, is obtained from the THz OHE analysis. The observed effective mass enhancement with temperature is evaluated and discussed in view of conduction band nonparabolicity, polaron effect, strain, and deviations from the classical Drude behavior. On the other hand, the electron effective mass parameter determined by MIR OHE is found to be temperature independent with a value of (0.200 ± 0.002) m0. A possible explanation for the different findings from THz OHE and MIR OHE is proposed.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. The hot-wall metalorganic chemical vapor deposition (MOCVD) concept, previously shown to enable superior material quality and high performance devices based on wide bandgap semiconductors, such as Ga(Al)N and SiC, has been applied to the epitaxial growth of β-Ga 2 O 3 . Epitaxial β-Ga 2 O 3 layers at high growth rates (above 1 μm/h), at low reagent flows, and at reduced growth temperatures (740 °C) are demonstrated. A high crystalline quality epitaxial material on a c-plane sapphire substrate is attained as corroborated by a combination of x-ray diffraction, high-resolution scanning transmission electron microscopy, and spectroscopic ellipsometry measurements. The hot-wall MOCVD process is transferred to homoepitaxy, and single-crystalline homoepitaxial β-Ga 2 O 3 layers are demonstrated with a [Formula: see text]01 rocking curve width of 118 arc sec, which is comparable to those of the edge-defined film-fed grown ([Formula: see text]01) β-Ga 2 O 3 substrates, indicative of similar dislocation densities for epilayers and substrates. Hence, hot-wall MOCVD is proposed as a prospective growth method to be further explored for the fabrication of β-Ga 2 O 3 . 
    more » « less
  4.  
    more » « less
  5. We report on terahertz (THz) electron paramagnetic resonance generalized spectroscopic ellipsometry (THz-EPR-GSE). Measurements of field and frequency dependencies of magnetic response due to spin transitions associated with nitrogen defects in 4H-SiC are shown as an example. THz-EPR-GSE dispenses with the need of a cavity, permits independently scanning field and frequency parameters, and does not require field or frequency modulation. We investigate spin transitions of hexagonal ( h) and cubic ( k) coordinated nitrogen including coupling with its nuclear spin (I = 1), and we propose a model approach for the magnetic susceptibility to account for the spin transitions. From the THz-EPR-GSE measurements, we can fully determine polarization properties of the spin transitions, and we can obtain the k coordinated nitrogen g and hyperfine splitting parameters using magnetic field and frequency dependent Lorentzian oscillator line shape functions. Magnetic-field line broadening presently obscures access to h parameters. We show that measurements of THz-EPR-GSE at positive and negative fields differ fundamentally and hence provide additional information. We propose frequency-scanning THz-EPR-GSE as a versatile method to study properties of spins in solid state materials.

     
    more » « less
  6. We determine the composition dependence of the transverse and longitudinal optical infrared-active phonon modes in rhombohedral α-(AlxGa1−x)2O3alloys by far-infrared and infrared generalized spectroscopic ellipsometry. Single-crystalline high quality undoped thin-films grown on m-plane oriented α-Al2O3substrates with x =  0.18, 0.37, and 0.54 were investigated. A single mode behavior is observed for all phonon modes, i.e., their frequencies shift gradually between the equivalent phonon modes of the isostructural binary parent compounds. We also provide physical model line shape functions for the anisotropic dielectric functions. We use the anisotropic high-frequency dielectric constants for polarizations parallel and perpendicular to the lattice c axis measured recently by Hilfiker et al. [Appl. Phys. Lett. 119, 092103 (2021)], and we determine the anisotropic static dielectric constants using the Lyddane–Sachs–Teller relation. The static dielectric constants can be approximated by linear relationships between those of α-Ga2O3and α-Al2O3. The optical phonon modes and static dielectric constants will become useful for device design and free charge carrier characterization using optical techniques.

     
    more » « less
  7. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
  8. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)